

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Electronic Interactions in Heterocyclic Compounds: 2-Substituted Benzoxazoles

J. M. Angelelli^a; J. C. Poite^a

^a Faculté des Sciences et Techniques de Saint-Jérôme, Centre de Spectroscopie Moléculaire et L. A 126 de, MARSEILLE CEDEX, France

To cite this Article Angelelli, J. M. and Poite, J. C.(1983) 'Electronic Interactions in Heterocyclic Compounds: 2-Substituted Benzoxazoles', *Spectroscopy Letters*, 16: 3, 193 — 197

To link to this Article: DOI: 10.1080/00387018308062334

URL: <http://dx.doi.org/10.1080/00387018308062334>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

ELECTRONIC INTERACTIONS IN HETEROCYCLIC
COMPOUNDS: 2-SUBSTITUTED BENZOXAZOLES.

J.M.ANGELELLI and J.C.POITE

Faculté des Sciences et Techniques de Saint-Jérôme
Centre de Spectroscopie Moléculaire et L.A 126 de
Chimie Moléculaire et Pétroléochimie,
13397 MARSEILLE CEDEX 13, France.

ABSTRACT

The determination of a valence-bond model for the $\nu_{C=N}$ vibration in 2-substituted benzoxazoles is possible using a quantitative method, based on integrated infrared intensities.

By comparison with the parent compounds, 2-substituted benzothiazoles, we are able to conclude that the electronic interactions in benzoxazoles may conduct to similar correlations than those already described for benzothiazoles.

INTRODUCTION

The attribution of the $\nu_{C=N}$ skeleton vibration in 2-substituted benzothiazoles has been already confirmed(1). It was then possible to definite a valence-bond model for resonance interactions in these compounds (2), through correlations with HAMMETT's σ constants(3). We intend here to compare the $\nu_{C=N}$ intensities of the two parent compounds.

EXPERIMENTAL

2-chlorobenzoxazole and 2-methylbenzoxazole are commercial compounds; 2-diethylaminobenzoxazole and

2-methoxybenzoxazole are prepared following known methods (4,5).

All compounds were recorded on a PE 225 spectrophotometer, between 1650 and 1400 cm^{-1} . The path length of NaCl cells used (150 microns) were determined exactly by the interference method (6). The absorption of the solvents (spectroscopic grade CCl_4 or CHCl_3) was compensated to have a regular base line in the studied spectral range. Concentrations are calculated to give an absorption with a maximum between 40 and 80 %.

Spectra are recorded twice at two concentrations, giving an integrated intensity which is the average of four integrations.

$$A = c^{-1} \cdot e^{-1} \cdot \int a \cdot d\nu \quad (A \text{ in } \text{l}^{-1} \cdot \text{mole}^{-1} \cdot \text{cm}^{-2})$$

c = concentration ($\text{mole} \cdot \text{l}^{-1}$)

e = path length (cm)

a = optical density relative to the base line

$d\nu$ = integration interval (cm^{-1})

A five scale expansion gives a good precision for the integration every cm^{-1} .

RESULTS AND DISCUSSION

The comparison with their sulfur homologous seems to be a good approach to the estimation of intramolecular interactions in benzoxazoles. It would have been possible to investigate the 2-substituted oxazoles, as we did for the couple thiazole/benzothiazole (1). However, if the valence bond model is the same, as we expect, it is more convenient, in a first approach, to use the "benzo" compounds.

We would have liked to use in our calculations the parameters for benzoxazole and 2-fluorobenzoxazole. But this was not possible for two reasons:

a) Benzoxazole gives band overlapping in the studied area;

b) 2-fluorobenzoxazole is too reactive and must be stored at -10°C as a petroleum ether solution (7).

Table I gives the spectroscopic data found for benzoxazoles and those already described for benzothiazoles (2), respectively designed as BO and BT.

Infrared measurements for substituted BT compounds

TABLE I: IR DATA FOR 2-SUBSTITUTED BO AND BT DERIVATIVES

	BO		ϵ_A	A_{BO}	$A_{BT}^{d)}$
	$\nu_{C=N}$ this work	litt.			
CH ₃ (a)	1578	1578 (c)	179 97	1480	1650
Cl (a)	1526	1526 (c)	789 806	2330	3050
OCH ₃ (a)	1549	--	888 --	7980	8670
NET ₂ (b)	1512	--	447 --	13370	14200

a) Solvent CCl₄b) Solvent CHCl₃

c) Reference 8

d) Reference 2

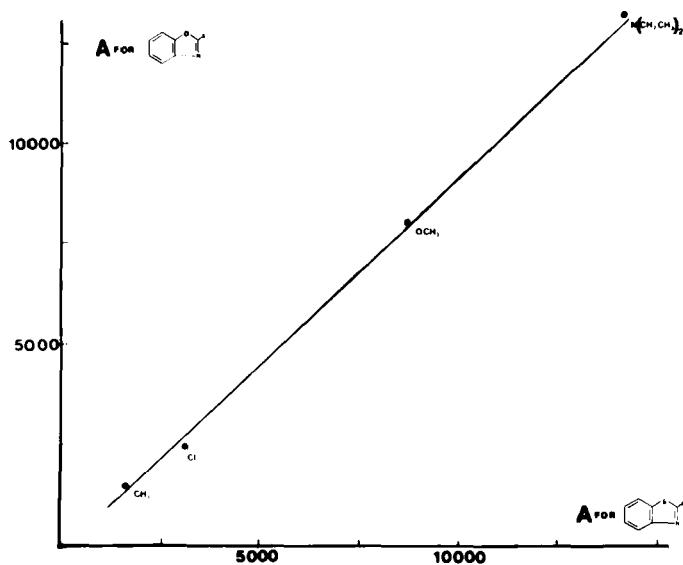


Fig. 1

Relation $A_{BO} \approx f(A_{BT})$

have confirmed (2) that the infrared intensity A is a function of the σ_R^0 resonance parameter corresponding to the 2-substituent (9).

It can be seen from Fig.1 that there is also a linear correlation between A_{BO} and A_{BT} . Using a least square method it is possible to write :

$$A_{BO} = 0,96 A_{BT} - 1,05 \quad (r = 0,999).$$

This relation was established for donor substituents, covering a large σ_R^0 scale. These experimental results show that intramolecular interactions in 2-substituted benzoxazoles are similar to those in 2-substituted benzothiazoles. We are going to examine other benzoxazoles to determine a more general relation (10).

CONCLUSION

IR quantitative methods confirm to be a good tool for evaluation of intramolecular interactions in benzoheterocyclic systems.

REFERENCES

1. J.M. ANGELELLI, J. CHOUTEAU, M. GUILIANO and G. MILLE Spectr. Lett 13, 741 (1980).
2. J.M. ANGELELLI, J. CHOUTEAU, M. GUILIANO and G. MILLE Spectrochim. Acta, 37 A, 973 (1981).
3. H.H. JAFFE, Chem. Rev 53, 191 (1953).
4. L.J. DARLAGE, T.H. KINSTEL and C.L. MC INTOSH J. Org. Chem. 36, 1088 (1971).
5. S.B. ADVANI and J. SAM, J. Pharm. Sci., 57, 1963 (1968).
6. W.J. POTTS, Chemical Infrared Spectroscopy, Vol. 1, Wiley, New-York, 117 (1963).
7. Y. WATANABE and T. MUKAIYAMA, Chem. Lett., 349 (1978).

8. G. MILLE and J. CHOUTEAU, *C.R. Acad. Sci. Paris*, 283, Série B, 369 (1976).
9. R.T.C. BROWNLEE, D.G. CAMERON, R.D. TOPSOM, A.R. KATRITZKY and A.F. POZHARSKY, *J. Chem. Soc., Perkin Transactions II*, 3, 247 (1974).
10. J.M. ANGELELLI, to be published.

Received: November 22, 1982

Accepted: January 5, 1983